skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Humayun, Mark"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. BackgroundRetinal degeneration is a major cause of irreversible blindness. Stimulation with controlled low-level electrical fields, such as transcorneal electrical stimulation (TES), has recently been postulated as a therapeutic strategy. With promising results, there is a need for detailed molecular characterization of the therapeutic effects of TES. MethodsControlled, non-invasive TES was delivered using a custom contact lens electrode to the retinas of Royal College of Surgeons (RCS) rats, a model of retinal degeneration. DNA methylation in the retina, brain and cell-free DNA in plasma was assessed by reduced representation bisulfite sequencing (RRBS) and gene expression by RNA sequencing. ResultsTES induced DNA methylation and gene expression changes implicated in neuroprotection in the retina of RCS rats. We devised an epigenomic-based retinal health score, derived from DNA methylation changes observed with disease progression in RCS rats, and showed that TES improved the epigenomic health of the retina. TES also induced DNA methylation changes in the superior colliculus: the brain which is involved in integrating visual signaling. Lastly, we demonstrated that TES-induced retinal DNA methylation changes were detectable in cell-free DNA derived from plasma. ConclusionTES induced DNA methylation changes with therapeutic effects, which can be measured in circulation. Based on these changes, we were able to devise a liquid biopsy biomarker for retinal health. These findings shed light on the therapeutic potential and molecular underpinnings of TES, and provide a foundation for the further development of TES to improve the retinal health of patients with degenerative eye diseases. 
    more » « less
    Free, publicly-accessible full text available December 5, 2025
  2. Abstract Airborne transmission by droplets and aerosols is known to play a critical role in the spread of many viruses amongst which are the common flu and the more recent SARS-CoV-2 viruses. In the case of SARS-CoV-2, the nasal cavity not only constitutes an important viral entry point, but also a primary site of infection (Sungnak W. et al. Nat. Med. 26:681–687. https://doi.org/10.1038/s41591-020-0868-6 , 2020).. Although face masks are a well-established preventive measure, development of novel and easy-to-use prophylactic measures would be highly beneficial in fighting viral spread and the subsequent emergence of variants of concern (Tao K. et al. Nat Rev Genet 22:757–773. https://doi.org/10.1038/s41576-021-00408-x , 2021). Our group has been working on optimizing a nasal spray delivery system that deposits particles inside the susceptible regions of the nasal cavity to act as a mechanical barrier to impede viral entry. Here, we identify computationally the delivery parameters that maximize the protection offered by this barrier. We introduce the computational approach and quantify the protection rate obtained as a function of a broad range of delivery parameters. We also introduce a modified design and demonstrate that it significantly improves deposition, thus constituting a viable approach to protect against nasal infection of airborne viruses. We then discuss our findings and the implications of this novel system on the prevention of respiratory diseases and targeted drug delivery. 
    more » « less
  3. The emergence and mutation of pathogenic viruses have been occurring at an unprecedented rate in recent decades. The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has developed into a global public health crisis due to extensive viral transmission. In situ RNA mapping has revealed angiotensin-converting enzyme 2 (ACE2) expression to be highest in the nose and lower in the lung, pointing to nasal susceptibility as a predominant route for infection and the cause of subsequent pulmonary effects. By blocking viral attachment and entry at the nasal airway using a cyclodextrin-based formulation, a preventative therapy can be developed to reduce viral infection at the site of entry. Here, we assess the safety and antiviral efficacy of cyclodextrin-based formulations. From these studies, hydroxypropyl beta-cyclodextrin (HPBCD) and hydroxypropyl gamma-cyclodextrin (HPGCD) were then further evaluated for antiviral effects using SARS-CoV-2 pseudotypes. Efficacy findings were confirmed with SARS-CoV-2 Delta variant infection of Calu-3 cells and using a K18-hACE2 murine model. Intranasal pre-treatment with HPBCD-based formulations reduced viral load and inflammatory signaling in the lung. In vitro efficacy studies were further conducted using lentiviruses, murine hepatitis virus (MHV), and influenza A virus subtype H1N1. These findings suggest HPBCD may be used as an agnostic barrier against transmissible pathogens, including but not limited to SARS-CoV-2. 
    more » « less
  4. Retinal diseases such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD) are characterized by unrelenting neuronal death. However, electrical stimulation has been shown to induce neuroprotective changes in the retina capable of slowing down the progression of retinal blindness. In this work, a multi-scale computational model and modeling platform were used to design electrical stimulation strategies to better target the bipolar cells (BCs), that along with photoreceptors are affected at the early stage of retinal degenerative diseases. Our computational findings revealed that biphasic stimulus pulses of long pulse duration could decrease the activation threshold of BCs, and the differential stimulus threshold between ganglion cells (RGCs) and BCs, offering the potential of targeting the BCs during the early phase of degeneration. In vivo experiments were performed to evaluate the electrode placement and parameters found to target bipolar cells and evaluate the safety and efficacy of the treatment. Results indicate that the proposed transcorneal Electrical Stimulation (TES) strategy can attenuate retinal degeneration in a Royal College of Surgeon (RCS) rodent model, offering the potential to translate this work to clinical practice. 
    more » « less
  5. Abstract Objective . Retinal implants have been developed to electrically stimulate healthy retinal neurons in the progressively degenerated retina. Several stimulation approaches have been proposed to improve the visual percept induced in patients with retinal prostheses. We introduce a computational model capable of simulating the effects of electrical stimulation on retinal neurons. Leveraging this computational platform, we delve into the underlying mechanisms influencing the sensitivity of retinal neurons’ response to various stimulus waveforms. Approach . We implemented a model of spiking bipolar cells (BCs) in the magnocellular pathway of the primate retina, diffuse BC subtypes (DB4), and utilized our multiscale admittance method (AM)-NEURON computational platform to characterize the response of BCs to epiretinal electrical stimulation with monophasic, symmetric, and asymmetric biphasic pulses. Main results . Our investigations yielded four notable results: (a) the latency of BCs increases as stimulation pulse duration lengthens; conversely, this latency decreases as the current amplitude increases. (b) Stimulation with a long anodic-first symmetric biphasic pulse (duration > 8 ms) results in a significant decrease in spiking threshold compared to stimulation with similar cathodic-first pulses (from 98.2 to 57.5 µ A). (c) The hyperpolarization-activated cyclic nucleotide-gated channel was a prominent contributor to the reduced threshold of BCs in response to long anodic-first stimulus pulses. (d) Finally, extending the study to asymmetric waveforms, our results predict a lower BCs threshold using asymmetric long anodic-first pulses compared to that of asymmetric short cathodic-first stimulation. Significance . This study predicts the effects of several stimulation parameters on spiking BCs response to electrical stimulation. Of importance, our findings shed light on mechanisms underlying the experimental observations from the literature, thus highlighting the capability of the methodology to predict and guide the development of electrical stimulation protocols to generate a desired biological response, thereby constituting an ideal testbed for the development of electroceutical devices. 
    more » « less
  6. Retinal prosthetic systems have been developed to help blind patients suffering from retinal degenerative diseases gain some useful form of vision. Various experimental and computational studies have been performed to test electrical stimulation strategies that can improve the performance of these devices. Detailed computational models of retinal neurons, such as retinal ganglion cells (RGCs) and bipolar cells (BCs), allow us to explore the mechanisms underlying the response of cells to electrical stimulation. While electrophysiological studies have shown the presence of voltage-gated ionic channels in different regions of BCs, many of the existing cone BCs models are assumed to be passive or only contain calcium channels at the synaptic terminals. We have utilized our Admittance Method (AM)-NEURON computational platform to implement a more realistic model of ON-BCs. Our model closely replicates the recent patch-clamp experiments directly measuring the response of ON-BCs to epiretinal electrical stimulation and thereby predicts the regional distributions of the ionic channels. Our computational results further indicate that outward potassium current strongly contributes to the depolarizing voltage transient of ON-BCs in response to electrical stimulation. 
    more » « less
  7. Abstract Epiretinal prostheses aim at electrically stimulating the inner most surviving retinal cells—retinal ganglion cells (RGCs)—to restore partial sight to the blind. Recent tests in patients with epiretinal implants have revealed that electrical stimulation of the retina results in the percept of color of the elicited phosphenes, which depends on the frequency of stimulation. This paper presents computational results that are predictive of this finding and further support our understanding of the mechanisms of color encoding in electrical stimulation of retina, which could prove pivotal for the design of advanced retinal prosthetics that elicit both percept and color. This provides, for the first time, a directly applicable “amplitude-frequency” stimulation strategy to “encode color” in future retinal prosthetics through a predictive computational tool to selectively target small bistratified cells, which have been shown to contribute to “blue-yellow” color opponency in the retinal circuitry. The presented results are validated with experimental data reported in the literature and correlated with findings in blind patients with a retinal prosthetic implant collected by our group. 
    more » « less
  8. null (Ed.)